INVERSE PROBLEM OF THE VIBRATIONS OF RODS
AND STRINGS OF VARIABLE MASS

V. M. Smotrov and V. M. Chernyshev UDC 534.113

We formulate the inverse problem for longitudinal, torsional, and transverse vibrations of
rods and transverse vibrations of strings of variable mass. It is shown that if certain as-
sumptions are made concerning the densities of the combining and separating particles, the
problem reduces to the integration of independent partial differential equations and a system
of ordinary differential equations of first order.

1. Combining and separating particles may be of three types. The first type includes particles which
combine and separate at each point of the surface of a rod or string and form a unified solid medium with
the rod or string. The second type includes particles which combine or separate at each point of the sur-
face of an elastic body and are connected with the rod (or string), interact with it, and do not interact with
one another. Particles of the third type combine and separate at some discrete points of the rod or string.

The combining and separation of the particles does not affect the criteria of an elastic body which
characterize it as a rod or string. The axis of the rod does not change its position with respect to the rod.
At the moment of combining or separation, the particles move parallel to the displacement of the points of
the rod (or string)., The x axis is directed along the axis of the undeformed rod (or string) from its left end
toward its right end. The length of the rod (or string) is denoted by I , and the transverse motion of its
points is denoted by z(x, ).

The rod is divided into segments by the points Mj (X{) Xj <Xj+y; X4=0; xXy=1;i=1, 2, ..., n), at which
there are particles of the third type. If at the end points My (0) and My (I) there are no such particles, we
shall assume that such particles are there but have zero mass.

For particles of the first type, we introduce the following notation: p,° (x) is the initial linear density
at the point M (x); pik (x, t) and vmk (x,t) k=1, 2, 3, 4) are the linear densities and absolute velocities of
of the combining and separating particles at time t. The superscript 1 indicates a combining particie and
its movement in the direction of increasing z. The superscript 2 also indicates a combining particle, but
one which moves in the direction of decreasing z. The superscript 3 indicates a separating particle moving
in the positive z direction. The superscript 4 means that a particle is separating and moving in the direc-
tion of decreasing z. We have
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where Ry is the intensity of the reactive forces of the combining and separating particles in their relative
motion; vy =v; ,K— 82/0t are the relative velocities of the particles.

This notation, except for the subscript, will be retained for the corresponding values associated with
the other types of particles. The subscript for particles of the second type will be 2, and the subscript for
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particles of the third type will be M;. In the expressions for values associated with particles of the third
type, partial derivatives should be replaced with ordinary derivatives. For particles of the first and second
types, the mass density and the intensity of reactive forces are the values for mass and force per unit
length. For particles of the third type, these are the mass and force concentrated at the point in question.
It will be convenient hereafter to regard the mass density and force intensity for particles of the third type
as linear. Then the mass density and reactive-force intensity will take the form

ks
(1.1)
p=pis ot D 0y 31 (& — 1),
=1

n

SRy Ry - D Rt oy (2~ 1)

i=1

R

'

where ¢4 is a pulse function of first order.

The inverse problem for the vibrations of elastic bodies of variable mass will be for mulated by anal-
ogy with the mechanics of discrete systems of variable mass [1]. For a given external loading Q(x, t) and a
given law of vibration z(x, t), we are required to find the density of the body at any instant of time at any
point of the body. The absolute or relative velocities of the combining and separating particles are given
as functions of the coordinates and time. We also know p °. py°, p;°. In what follows, the formulation of
the inverse problem will be made more precise by the introduction of additional conditions.

For boundary points the formulation of the inverse problem is the following. If we do not know the
reactions of the external medium on the end points, then the masses P M1 and p My are given values. In this
case we must determine the unknown reactions acting on the ends of the body. If the reactions are known,
what we must determine are the masses of the end points.

The relation between the linear density and the displacements of the points of the rod is expressed by
the differential equation for the vibrations of a rod of variable mass [2]. This differential equation involves
Pik, sz, PMik and their derivatives with respect to time. Therefore, we must first determine these quan-
tities and then determine the density of the body. The differential equation for the vibrations is not suffi-
cient for finding p X, po¥. pyiK. We must also know additional conditions relating these quantities to one
another. They may be of various kinds. We shall confine ourselves to the case in which these conditions
are given in the form of algebraic relations among pik, 09K, pMik, i.e., the densities of the combining and
separating particles are connected by the relations
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To these conditions we add the equations
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Relations (1.2) and (1.3) are such that after solving them for p K, poK, PMik, we obtain the following
functions, which are continuous and have continuous derivatives with respect to y and t:
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After differentiating ¢ lk, rpgk, @ Mik with respect to t and substituting the derivatives into the expres-
sion for the intensity of the reactive forces, we have
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2. The equation for longitudinal vibrations of a rod of variable mass can be written in the form
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where w is the rigity of the rod for longitudinal vibrations.
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For torsional vibrations of a rod, the quantities pertaining to translational motion in (2.1) must be
replaced with the analogous quantities for rotational motion. From physical considerations, we can con-
clude that for longitudinal and torsional vibrations of a rod, » can be a function of p4, x, and t. Taking ac-
count of the equations in (1.4), we find that the rigidity of the rod is n=¥ (u, x, t}.

We assume that all the functions involved in Eq. (2.1) are continuous with respect to t, except for
1 (9z/8x). They are all continuous with respect to x. The function »® {8z/0%) has discontinuities of the
first kind at the points M; and is continuous at all other points. If Myn (0t/98x) were continuous at the points
M;, the vibrations of the rod would not affect the motion of the mass P M;- We integrate Eq. (2.1) with re-
spect to x between the limits xj — € and x; +&, after which we let approach zero. We obtain a differential
equation for the vibrations of the mass pM;*
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where wi =¥ (E%z/ax)]X -k (9z2/0%) ] ;-0 18 the jump of % (0z/0x) at the point M;; wi takes account of the
effect of the rod on the motxon of the mass pM;; for the left endw;=( ( 9z/8%)x—y, and for the right end
wp =" az/ax)x_z , since the rigidity outside the rod is zero, and Fj is the concentrated external force
applied to the mass pny;-

In (2.2) we replace pjj and Ryjr with their expressions from (1.4) and (1.6) and thus obtain a system
of n independent ordinary differential equations of first order for determining the m;:
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For each of the segments [xi, X{+] (i=1, 2, ... n—1) we have a partial differential equation for deter-
mining p which was obtained from Eq. (2.1):
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This equation is a quasilinear partial differential equation of first order. The theory and methods of
solution of such equations are known [3]. In what follows it will be assumed that the coefficients a, b, ¢
satisfy requirements such that for all xj =x=<xj44, 0st<Tj (=1, 2, ..., n—1) the solution exists and is
unique. The initial and boundary conditions must be specified. The initial condition is obtained from (1.3)
for t=0. In order to specify the boundary condition, we must know p =f ,; from (1.3) as a function of t at
one of the ends of the segment [Xj, X{4+4]. If f; is known for the left end of the segment [x;, X{..4], we must
take this as the value of y immediately to the right of the point x;. If f 4 is known for the right end of the
segment, then the value of y is given immediately to the left of the point x;;; The boundary condition is
given in such a way (i.e., the selected end of the segment [X;, Xj{.4] is selected in such a way) that the char-
acteristics of Eq. (2.4) in the plane of variable x and t will not intersect one another and will have at most
one point in common with the curve on which the initial and boundary conditions are given.

Specifying f 3 as a function of time at one end of the segment [X{, X;j44] is a feature which must be
added in the formulation of the inverse problem.

The sequence of steps gone through in solving the inverse problem is the following: from Eq. (2.4}
we must find p; next, from (1.4) we must determine p; and py and express w in terms of x and t. After
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this, we solve Eq. (2.3) for the mj, and from (1.4) we find the pyy;. Using formula (1.1), we determine the
linear density. In the case in which we have to find the reaction acting at one of the ends, we must use the
corresponding equation of (2.3). This equation will be algebraic in the unknown reaction.

Equations (2.3) and (2.4) can be algebraic if the a4, @, and b are identically zero. This may happen,
for example, if the relative velocities of the combining and separating particles are zero, and ¢ does not
depend explicitly on p. In the case when only one of the coefficients a, b is identically zero, Eq. (2.4) can
be regarded as an ordinary differential equation, where we treat as a parameter the variable with respect
to which there is no partial differentiation in the equation. If @ = 0, the initial condition is unnecessary; if
b=, the boundary condition is unnecessary.

Let us consider an example. A rod with a fixed end at x=0 and a free end at x=1 undergoes free lon-
gitudinal vibrations according to the law z=u sin t, where u=£€x for 0<x=<] /2 and u=&(] —x) for /2=
x =1 (¢ is a small positive constant), Particles of the first type combine with the rod. We have p;° =const,
pil=p, pt=pt=0, n=2e"2p,  For x=1/2 the rigidity varies according to the law n=2&-%p > exp
[1/2[82 +2t)t]. The relative velocities of the combining particles are such that v,r1+v1r2) =-gin t.

Variable masses pf, and p ), are affixed to the midpoint of the rod and its free end. The relative
velocities of the combining and separating particles for the mass P, 3T€ zero. Particles are separating
from mass py,, S0 that past=p M =0, pag® =pM,t, Vo (Vg +VM3r4) =—&-1gint.

Setting p,=p, we write Eq. (2.4) as

N N
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Solving this equation, we find p;=p{° exp [(u+t)t]l. From the first equation of the system (2.3), which
is an algebraic equation, we find the reaction at the fixed left end of the rod, Fp =—2&~!p° sint exp t2,

The equation for determining the mass py is also an algebraic equation. Setting c, =0, we obtain
pM, =481 ~Tp > exp [/, (E1 +2t) tl.
The third equation of the system Eq. (2.3) is a differential equation. Setting mg=pM, in this equation,

we obtain

t
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3. On the basis of the analogy between the longitudinal vibrations of a rod and the transverse vibra-
tions of a string, we can assert that the differential equation of the vibrations of a string of variable mass
coincides with Eq. (2.1). The tension of the string, like the rigidity in the case of longitudinal vibrations of
a rod, may depend on p,, X, and t. Making use of Eq. (1.4), we obtain w=y (u, x, t). According to [4], the
tension at each instant of time is identical for all points of the string, i.e., ¢ (u x,t), X, t) is a function
which, if not constant, varies only with time. Consequently,

dpaw . I _ g (3.1)

This relation enables us to reduce the differential equation (2.4) of the inverse problem of the vibra-
tions of a string of variable mass on the segment [x;, xj4;] to the form

au 3.2)
where a is found from formula (1.5) and
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_ Equation (3.2) is an ordinary differential equation involving the coordinate x as a parameter, and
therefore it is unnecessary to give any boundary conditions.

The differential equations of the inverse problem for the masses pyy; are the same as (2.3), but the
wi in these equations can be represented in the form
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This equation means that when the masses p}y; interact with the string at the points Mj (1=2,3,...,
n—1) the condition of smoothness of the string is violated, i.e., at these points the string has discontinu-
ities.

To the case in which § does not depend explicitlyon x there corresponds the solution of Eq. (3.2},

which is a function of t. This means that ¢, and @ are also functions of time. This condition imposes cer-
tain limitations on the relative velocities of the combining and separating particles and their densities.

If at least one end of the string is free, then ¢ (u, x, t)=0. We may assume that the form of the func-
tion ¥ is unknown. After determining p as a function of f (x, t) from (3.2), it is sufficient to set p =p ~
f (%, t). If the form of the function ¢ is known, then from the equation ¢ =0 we find p as a function of x and
t. This function must satisfy two requirements. Firstly, when it is substituted info Eq. (3.2), the equation
must become an identity; secondly, this function must satisfy the initial conditions. -

The sequence of steps followed in solving the inverse problem for the vibrations of a string of vari-
able mass is the same as the sequence of steps for the analogous problem involving the longitudinal vibra-
tions of a rod of variable mass.

Let us consider an example, A string whose ends are fixed undergoes free vibrations according to
the law z =€ sin (rx/1 ) sin t, where € is a small positive constant. Particles of the first type combine with
the string; p =py, p°=const, p11=p12, p13=p14=0, 1/2 (er1+vﬂ-2) =z, w=27-212p, Setting u=p, we can
write Eq. (3.2) in the form dp/dt =p. From this we find p =p°e'. The equations in (2.3) enable us to find
the reactions at the fixed ends. These reactions are equal to 2¢7 7=1p °e' sin t.

4. We write the differential equation for the transverse vibrations of a rod of variable mass [2]:
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where n (p4, X, t) is the rigidity of the rod for deflection.

All the functions occurring in Eq. (4.1) are continuous with respect to t and p. All of them except
(8/9x) [ (8%2/8x%)] are continuous with respect to x. The function (8/9x) [% (62z/9x%)] has discontinuities
of the first kind at the points x; and is continuous at all other points. On each of the segments [x{, Xj4]
(i=1, 2, .., n—~1) we have a partial differential equation for deter mining p, found from Eq. (3.1):
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The coefficient ¢ is found from formula (1.5). The other coefficients have the form
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Equation (4.2) is a nonlinear partial differential equation of second order [5]. Its coefficients a, p, q,
r, c are assumed to be such that the hypothesis of the existence and uniqueness theorem for the mixed
problem when x; =X sxj14, 0 <t =T, is satisfied. In addition to the initial condition obtained from (1.3), we
specify the boundary conditions as follows. We shall assume that in (1.3) Js is a function of time imme-
diately to the right of the point x; and immediately to the left of the point xj44. This is the additional condi-
tion that must be introduced into the formulation of the inverse problem involving transverse vibrations of
a rod of variable mass,

The differential equations of motion of the masses PG have the same form as the equations in (2.3),
but in these equations the w; are different from the case of longitudinal vibrations. For transverse vibra-
tions the w; are given by the formula

_ _a_( o2 9 ( 0% .
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Equations (4.2) and (2.3) can be solved in any sequence, since the w, can be found by using the bound-
ary conditions.

Let us consider an example. A rod with free ends at x=0 and x =] undergoes free transverse vibra-
tions according to the law z = ex{l —x)sin t, €=const > 0. Particles of the first kind separate from the
rod; p11=p12 =0, p=p &, p=px, B=const>0, p (0,t)=0, p (,t)=51 e, The rigidity of the rod varies
according to the law n=ap4, & =const > 0. The relative velocities ofthe separating particles are such that
1/2 (v_,r3 +vnn4) =x (I -x) sint. Setting p=p =p;, we write Eq. (3.2) in the form
o
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The solution of this equation, which is obtained by separation of variables, is p =pxe-tt,

5. In our earlier discussion we distinguished between particles of the first and second types which
combine with or separate from the rod or string; the reason for this distinction was that particles of the
first type form a unified solid medium with the rod or string, whereas in the case of particles of the sec-
ond type the internal stresses are so small that they may be neglected.

Inverse problems in which there are no combining or separating particles of the first type are of no
interest, since Egs. (2.4) and (4.2) become ordinary differential equations of first order with the coordinate
X as a parameter. It is unnecessary to specify the boundary conditions. The reason for this is that com-
bination and separation of particles of the first type affects the variation of the rigidity of the rod, with the
result that Egs. (2.4) and (4.2) contain derivatives of u with respect to x. Therefore, as boundary condi-
tions, we can specify the rigidity as a function of time at the ends of the segment [x{, X;14]. In other words,
as the function f 4 in (1.3) we should take an appropriate function of %, x, and t. In particular, if f ; is linear
with respect to v, then the coefficient q in Eq. (4.2) vanishes.

In the solution of inverse problems of longitudinal and transverse vibrations of rods, the initial and
boundary conditions for Egs. (2.4) and (3.2) must satisfy consistency conditions. These conditions deter-
mine the degree of smoothness of the problem.
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